Chapitre 3: Zones de subduction et production de nouveaux matériaux

Nous avons vu que la croûte océanique s'enfonce et disparaît au niveau des zones de subduction.

Comment cette subduction pourrait-elle créer de nouveaux matériaux?
1) Caractéristiques du volcanisme des zones de subduction

A) Des erruptions explosives

Activité 1 :
1) A partir de la vidéo suivante, *classifie* et *décrit* les différents types de volcans... Sois le plus précis possible (type d'erruption, exemple, localisation....
2) Propose quelques applications importantes du volcanisme

C'est pas sorcier : "les volcans"
<table>
<thead>
<tr>
<th>Zone de subduction</th>
<th>zone d'acrétion</th>
<th>Point chaud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strombolli, îles éoliennes Cordillère des Andes Ceinture de feu du Pacifique</td>
<td>Islande</td>
<td>Hawai</td>
</tr>
<tr>
<td>Volcanisme explosif:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panache de cendres et de gaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qui peut atteindre plusieurs metres de hauteur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuées ardent: cendres brulantes mélangées a des gaz qui dévalent les pentes du volcan**</td>
<td>Volcanisme effusif: coulées de lave</td>
<td></td>
</tr>
<tr>
<td>magma visqueux</td>
<td>magma fluide</td>
<td></td>
</tr>
</tbody>
</table>

Applications: Bain de boue, gaz de l'atmosphere, vie sans dioxygène (biodiversité)...
Pourquoi le volcanisme est-il de type explosif au niveau d'une zone de subduction?

B) Les roches mises en place

TP2:
- Observer au microscope, réaliser un dessin d'observation identifier les minéraux.
-Comparer les compositions chimiques de différentes roches volcaniques mises en place dans des conditions différentes pour répondre au problème.
<table>
<thead>
<tr>
<th></th>
<th>Andésite</th>
<th>Rhyolite</th>
<th>Basalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>composition minéralogique</td>
<td>plagioclase amphibole pyroxene</td>
<td>quartz amphibole plagioclase feldspath potassique</td>
<td>pyroxene plagioclase olivine</td>
</tr>
<tr>
<td>composition chimique</td>
<td>riche en silice</td>
<td></td>
<td>pauvre en silice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Présence de minéraux hydratés: D'ou vient l'eau?</td>
</tr>
</tbody>
</table>
L'explosivité de l'erruption est liée à la viscosité du magma. Plus le magma est visqueux, plus l'erruption est explosive. La viscosité est créée par des frictions internes provenant des liaisons chimiques, notamment la liaison Si-O. Plus un magma est riche en silice, plus il sera visqueux et donnera une éruption explosive. C'est ce qui se passe au niveau des zones de subduction.

Composition chimique des différents minéraux.

<table>
<thead>
<tr>
<th>MINÉRAL</th>
<th>FORMULE CHIMIQUE IDEALISÉE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine</td>
<td>(Mg,Fe)$_2$SiO$_4$</td>
</tr>
<tr>
<td>Groupe des pyroxènes</td>
<td>(Mg,Fe)SiO$_3$</td>
</tr>
<tr>
<td>Groupe des amphiboles</td>
<td>(Mg,Fe)$_7$Si8O${22}$(OH)$_2$</td>
</tr>
<tr>
<td>Micas</td>
<td>KAl$_2$(AlSi3O${10}$(OH)$_2$</td>
</tr>
<tr>
<td>Biotite</td>
<td>K(Mg,Fe)$_3$Si3O${10}$(OH)$_2$</td>
</tr>
<tr>
<td>Feldspath</td>
<td>KaSi$_3$O$_8$</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>(Ca,Na)AlSi$_3$O$_8$</td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO$_2$</td>
</tr>
</tbody>
</table>
2) Mise en place des roches des zones de subduction

Que faut-il : fusion partielle, puis refroidissement

A) Une fusion partielle du manteau

Activité 3: A partir des documents suivants, propose une origine à la fusion partielle du manteau.

<table>
<thead>
<tr>
<th>Quelques réactions du métamorphisme des zones de subduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. plagioclase + pyroxène + eau → hornblende</td>
</tr>
<tr>
<td>2. plagioclase + hornblende + eau → chlorite + actinote</td>
</tr>
<tr>
<td>3. albite + chlorite + actinote → glaucophane + eau</td>
</tr>
<tr>
<td>4. albite + glaucophane → grenat + jadéite + eau</td>
</tr>
<tr>
<td>5. albite → jadéite + quartz</td>
</tr>
</tbody>
</table>
Liquidus et solidus des péridotites seches

Liquidus et solidus des péridotites hydratées
Les roches de la plaque plongeante se transforment par métamorphisme. Certains minéraux disparaissent et d'autres apparaissent. Ces transformations minéralogiques libèrent de l'eau qui hydrate le manteau voisin. La péridotite hydratée entre 80 et 200 Km peut subir la fusion partielle et se transformer en magma liquide. Ce magma liquide et hydraté remonte par différence de densité. Il sera à l'origine des différentes roches vues précédemment riches en minéraux hydroxylé.

B) un refroidissement plus ou moins lent

Comment montrer que dans une même zone de subduction le magma se refroidit à différentes vitesses?

TP4 :
Observer des roches issues d'un même magma. Encomparant leur structure, expliquer les différences de formation.
Granite et rhyolite sont composés des mêmes minéraux. Elles ont donc la même origine; Cependant les structures diffèrent. Le granite présente des minéraux jointifs. On parle de structures grenues. Au contraire, la rhyolite a une structure microlitique. Les minéraux sont noyés dans du verre.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Grenue</th>
<th>Microlithique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Cristaux visibles à l’œil nu. L’ensemble de la roche est entièrement cristallisé</td>
<td>Existence de gros cristaux (phénocristaux) et de petits cristaux (microlithes) dans une pâte non cristallisée apparaissant noire en lumière polarisée analysée.</td>
</tr>
<tr>
<td>minéralogique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldspaths</td>
<td>DIORITE</td>
<td>ANDESITE</td>
</tr>
<tr>
<td>Plagioclases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyroxène et/ou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiboles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>GRANITE</td>
<td>RHYOLITE</td>
</tr>
<tr>
<td>Feldspaths (orthose avec ou sans plagioclases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Refroidissement lent Roche plutonique d’origine profonde</td>
<td>Refroidissement rapide Roche volcanique d’origine superficielle</td>
</tr>
<tr>
<td>lent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activité 5: Réaliser un schéma bilan expliquant comment se crée de la croute continentale au niveau des zones de subduction.

mots clés: subduction, plan de benioff, isotherme 1300°C, co, cc, lithosphere, asthénosphere, prisme d'accrétion, gabbro, schiste vert, éclogite, H2O, granite, diorite, andésite, rhyolite, volcanisme explosif, fussion partielle des péridotites, refroidissement lent, refroidissement rapide...